伊人影视,亚洲爆乳无码一区二区三区,久久av,欲妇荡岳丰满交换


免費(fèi)注冊(cè)快速求購(gòu)


分享
舉報(bào) 評(píng)價(jià)

移動(dòng)式葉綠素?zé)晒獬上裣到y(tǒng)

參考價(jià)面議
具體成交價(jià)以合同協(xié)議為準(zhǔn)

該廠商其他產(chǎn)品

我也要出現(xiàn)在這里

移動(dòng)式葉綠素?zé)晒獬上裣到y(tǒng)PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專門(mén)針對(duì)大田、溫室、氣候室和實(shí)驗(yàn)室場(chǎng)景的可以移動(dòng)的葉綠素?zé)晒鉁y(cè)量系統(tǒng)

詳細(xì)信息 在線詢價(jià)

 

移動(dòng)式葉綠素?zé)晒獬上裣到y(tǒng)PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專門(mén)針對(duì)大田、溫室、氣候室和實(shí)驗(yàn)室場(chǎng)景的可以移動(dòng)的葉綠素?zé)晒鉁y(cè)量系統(tǒng)。配備移動(dòng)式升降平臺(tái)車(chē)、內(nèi)置電腦的葉綠素?zé)晒獬上駟卧⒁苿?dòng)電源、顯示單元和操作單元。葉綠素?zé)晒獬上駟卧梢陨岛托D(zhuǎn),既可以測(cè)量不同高度的植物冠層,也可以傾斜或水平角度測(cè)量穗(麥穗、稻穗、谷穗等)、莢果(大豆、油菜等)、果實(shí)(番茄、黃瓜、葡萄、柑橘等)、葉片或冠層。

 

該系統(tǒng)成像面積為18x18cm,具備500萬(wàn)像素高清成像,同時(shí)具備“調(diào)制”和“非調(diào)制”葉綠素?zé)晒獬上駵y(cè)量功能,既可以測(cè)量光合生理,也可以測(cè)量形態(tài)結(jié)構(gòu),同時(shí)配備功能強(qiáng)大的控制和分析軟件,且可以對(duì)大量數(shù)據(jù)進(jìn)行批處理分析。該系統(tǒng),無(wú)論室內(nèi)還是大田,都是進(jìn)行植物表型、光合生理、植物抗逆、植物病理、育種、功能基因組、突變株篩選、種子生理/病理等研究的利器。
 

 

功能特性

  • 大田、溫室、氣候室、實(shí)驗(yàn)室進(jìn)行移動(dòng)式測(cè)量
  • 葉綠素?zé)晒獬上駟卧梢陨怠⑿D(zhuǎn)
  • 葉綠素?zé)晒獬上窈捅硇头治鐾綔y(cè)量
  • 同時(shí)具備調(diào)制和非調(diào)制葉綠素?zé)晒鉁y(cè)量功能
  • 出色的高清相機(jī)(500萬(wàn)像素)、高信噪比成像
  • 16位圖像格式,的成像質(zhì)量
  • 光源、相機(jī)、濾光片、電腦一體化設(shè)計(jì)
  • 無(wú)可見(jiàn)鏡頭畸變,無(wú)需圖像校正
  • 成像范圍18 x 18cm
  • 多種測(cè)量protocol可選,允許用戶編輯設(shè)定自己的protocol,包括但不限于Fv/Fm測(cè)量、標(biāo)準(zhǔn)誘導(dǎo)曲線測(cè)量、暗弛豫測(cè)量、OJIP快速誘導(dǎo)動(dòng)力學(xué)測(cè)量等等。
  • 可進(jìn)行功能強(qiáng)大的延時(shí)成像測(cè)量
  • 自動(dòng)計(jì)算熒光參數(shù)和表型參數(shù)
  • 具備圖像數(shù)據(jù)批處理分析功能
  • 提供多種功能強(qiáng)大的圖像分割功能
  • 對(duì)所有圖像數(shù)據(jù)均提供數(shù)據(jù)分級(jí)(用戶自定義范圍)并進(jìn)行圖像化顯示,并允許對(duì)分級(jí)篩選后的數(shù)據(jù)疊加到可見(jiàn)光圖像上展示
  • 圖像背景、偽彩色標(biāo)尺均有多種選擇
  • 允許用戶自定義多種ROI(性狀、數(shù)目、分布等)并對(duì)ROI的數(shù)據(jù)自動(dòng)分析
  • 嵌入式電腦進(jìn)行精確的成像、時(shí)間控制、光強(qiáng)控制和數(shù)據(jù)存儲(chǔ)
  • 功能強(qiáng)大的控制和分析軟件
  • 特別適合突變株篩選、育種材料/組合篩選、抗逆研究、病理研究、種子研究、果實(shí)研究、功能基因組學(xué)等

主要技術(shù)參數(shù)

  • 基本組成:移動(dòng)式升降平臺(tái)、葉綠素?zé)晒獬上駟卧⒁苿?dòng)電源、顯示單元、操作單元等
  • 葉綠素?zé)晒獬上穹绞剑?ldquo;調(diào)制”測(cè)量 +“費(fèi)調(diào)制”測(cè)量
  • 調(diào)制測(cè)量光:藍(lán)色LED, 450nm,半峰全寬20nm,光強(qiáng)4000 umol m-2 s-1 ,獨(dú)立觸發(fā)
  • Kautsky測(cè)量光:藍(lán)色LED, 450nm,半峰全寬20nm,光強(qiáng)4000 umol m-2 s-1
  • 飽和脈沖:藍(lán)色LED, 450nm,半峰全寬20nm,光強(qiáng)4000 umol m-2 s-1,獨(dú)立觸發(fā)
  • 時(shí)間分辨動(dòng)力學(xué)光化光:紅光LED,660nm,光強(qiáng)800 umol m-2 s-1
  • 遠(yuǎn)紅光:LED,735nm,半峰全寬20nm,35W
  • 相機(jī):CMOS傳感器,500萬(wàn)像素
  • 顏色深度:12bit
  • 標(biāo)準(zhǔn)幀率:37.5 FPS
  • 圖像格式:16bit
  • 相機(jī)光譜范圍:400~1000 nm
  • 接口:3個(gè)USB3.0,1個(gè)以太網(wǎng)口,1個(gè)HDMI接口
  • 嵌入式電腦:4核處理器,8G內(nèi)存,256G固態(tài)硬盤(pán)
  • 成像面積:18cm x 18cm
  • 升降高度:0-1200mm(高度可定制)
  • 旋轉(zhuǎn)角度:-90° ~ 90°
  • 顯示單元:15.6寸觸摸顯示屏
  • 供電:35萬(wàn)mAh移動(dòng)電源,額定容量1260Wh,峰值功耗1000W,待機(jī)功耗35W
  • 系統(tǒng)尺寸:600mm x 720mm x 2000mm(長(zhǎng)x寬x高)

 

 

測(cè)量參數(shù)

  • 調(diào)制葉綠素?zé)晒鈪?shù):Fo、Fm、Fv/Fm、dFq/Fm=DF/Fm、Fs’、Fm’、Fo’、Fq’/Fm’=Fv’/Fm’、rETR、NPQ、Y(NO)、Y(NPQ)、qN、qP、qL、1-qP和1-qL等;
  • 非調(diào)制葉綠素?zé)晒鈪?shù):Fo、Fi、Fm、1-Fi/Fm、IC-Area、IC-Area/Fv、PI、Rfd、dRfd、RfdFm和RfdFt等;
  • 表型參數(shù):(植物、種子、果實(shí)的)數(shù)目、輪廓面積、長(zhǎng)度、寬度、凸包點(diǎn)數(shù)、凸包面積、凸包面積/輪廓面積、最小外接圓(質(zhì)心、半徑、面積)、最小外接矩形(長(zhǎng)、寬、面積、角度、alpha)和骨架等。

 

 

 

 

 

利用PhenoVation葉綠素?zé)晒獬上窦夹g(shù)發(fā)表的部分文獻(xiàn)

  1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
  2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
  3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
  4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
  5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
  6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
  7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
  8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
  9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
  10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
  11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
  12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
  13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
  14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
  15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
  16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
  17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
  18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
  19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
  20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
  21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
  22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
  23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
  24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) ction as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
  25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
  26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
  27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
  28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
  29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
  30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
  31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
  32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
  33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
  34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
  35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
  36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
  37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
  38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
  39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
  40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
  41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll ?uorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221


同類產(chǎn)品推薦


提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,可自行輸入要求

個(gè)人信息: